Introduction to IBM SPSS Modeler
• Introduction to data science
• Describe the CRISP-DM methodology
• Introduction to IBM SPSS Modeler
• Build models and apply them to new data
Collect initial data
• Describe field storage
• Describe field measurement level
• Import from various data formats
• Export to various data formats
Understand the data
• Audit the data
• Check for invalid values
• Take action for invalid values
• Define blanks
Set the unit of analysis
• Remove duplicates
• Aggregate data
• Transform nominal fields into flags
• Restructure data
Integrate data
• Append datasets
• Merge datasets
• Sample records
Transform fields
• Use the Control Language for Expression Manipulation
• Derive fields
• Reclassify fields
• Bin fields
Further field transformations
• Use functions
• Replace field values
• Transform distributions
Examine relationships
• Examine the relationship between two categorical fields
• Examine the relationship between a categorical and continuous field
• Examine the relationship between two continuous fields
Introduction to modeling
• Describe modeling objectives
• Create supervised models
• Create segmentation models
Improve efficiency
• Use database scalability by SQL pushback
• Process outliers and missing values with the Data Audit node
• Use the Set Globals node
• Use parameters
• Use looping and conditional execution